Abstract

Crowding, the identification difficulty for a target in the presence of nearby flankers, is ubiquitous in spatial vision and is considered a bottleneck of object recognition and visual awareness. Despite its significance, the neural mechanisms of crowding are still unclear. Here, we performed event-related potential and fMRI experiments to measure the cortical interaction between the target and flankers in human subjects. We found that the magnitude of the crowding effect was closely associated with an early suppressive cortical interaction. The cortical suppression was reflected in the earliest event-related potential component (C1), which originated in V1, and in the BOLD signal in V1, but not other higher cortical areas. Intriguingly, spatial attention played a critical role in the manifestation of the suppression. These findings provide direct and converging evidence that attention-dependent V1 suppression contributes to crowding at a very early stage of visual processing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.