Abstract

Attention underpins episodic memory encoding by gating information processing. However, it is unclear how different forms of attention affect encoding. Using fMRI, we implemented a novel task that separates top-down and bottom-up attention (TDA; BUA) to test how these forms of attention influence encoding. Twenty-seven subjects carried out a scanned incidental encoding task that required semantic categorisation of stimuli. Trials either required visual search (TDA) to locate a target, or the target blinked and captured attention (BUA). After a retention period, subjects performed a surprise recognition test. Univariate analyses showed that ventral visual regions and right hippocampus indexed encoding success. Psychophysiological interaction analyses showed that, during TDA, there was increased coupling between dorsal parietal cortex and fusiform gyrus with encoding failure, and between lateral occipital cortex and fusiform gyrus with encoding success. No significant connectivity modulations were observed during BUA. We propose that increased TDA to objects in space is mediated by parietal cortex and negatively impacts encoding. Also, increases in connectivity within ventral visual cortex index the integration of stimulus features, promoting encoding. Finally, the influences of attention on encoding likely depend on task demands: as cognitive control increases, task execution is emphasised at the expense of memory encoding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call