Abstract

Breast cancer is a heterogeneous disease and can be divided into several subtypes with unique prognostic and molecular characteristics. The classification of breast cancer subtypes plays an important role in the precision treatment and prognosis of breast cancer. Benefitting from the relation-aware ability of a graph convolution network (GCN), we present a multi-omics integrative method, the attention-based GCN (AGCN), for breast cancer molecular subtype classification using messenger RNA expression, copy number variation and deoxyribonucleic acid methylation multi-omics data. In the extensive comparative studies, our AGCN models outperform state-of-the-art methods under different experimental conditions and both attention mechanisms and the graph convolution subnetwork play an important role in accurate cancer subtype classification. The layer-wise relevance propagation (LRP) algorithm is used for the interpretation of model decision, which can identify patient-specific important biomarkers that are reported to be related to the occurrence and development of breast cancer. Our results highlighted the effectiveness of the GCN and attention mechanisms in multi-omics integrative analysis and the implement of the LRP algorithm can provide biologically reasonable insights into model decision.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call