Abstract
Compressive light field cameras have attracted notable attention over the past few years because they can efficiently determine redundancy from light fields. However, much of the research has only concentrated on reconstructing the entire light field from compressed sampling, which ignores the possibility of directly extracting information such as depth from it. In this paper, we introduce a light field camera configuration with a random color-coded microlens array. Considering the color-coded light fields, we propose a novel attention-based encoder–decoder network. Specifically, the encoder part compresses the coded measurement into a low-dimensional representation that removes most redundancy, and the decoder part constructs the depth map directly from the latent representation. The attention mechanism enables the network to process spatial and angular features dynamically and effectively, thus significantly improving performance. Extensive experiments on synthetic and real-world datasets show that our method outperforms the state-of-the-art light field depth estimation method designed for non-coded light fields. To our knowledge, this is the first study that combines the color-coded light field with the attention-based deep learning approach, which provides a crucial insight into the design of enhanced light field photography systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.