Abstract

Repetitive Transcranial Magnetic Stimulation (rTMS) is proposed as an effective treatment for major depressive disorder (MDD). However, because of the suboptimal treatment outcome of rTMS, the prediction of response to this technique is a crucial task. We developed a deep learning (DL) model to classify responders (R) and non-responders (NR). With this aim, we assessed the pre-treatment EEG signal of 34 MDD patients and extracted effective connectivity (EC) among all electrodes in four frequency bands of EEG signal. Two-dimensional EC maps are put together to create a rich connectivity image and a sequence of these images is fed to the DL model. Then, the DL framework was constructed based on transfer learning (TL) models which are pre-trained convolutional neural networks (CNN) named VGG16, Xception, and EfficientNetB0. Then, long short-term memory (LSTM) cells are equipped with an attention mechanism added on top of TL models to fully exploit the spatiotemporal information of EEG signal. Using leave-one subject out cross validation (LOSO CV), Xception-BLSTM-Attention acquired the highest performance with 98.86% of accuracy and 97.73% of specificity. Fusion of these models as an ensemble model based on optimized majority voting gained 99.32% accuracy and 98.34% of specificity. Therefore, the ensemble of TL-LSTM-Attention models can predict accurately the treatment outcome.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.