Abstract
Sleep staging is an important basis for diagnosing sleep-related problems. In this paper, an attention based convolutional network for automatic sleep staging is proposed. The network takes time-frequency image as input and predict sleep stage for each 30-s epoch as output. For each CNN feature maps, our model generate attention maps along two separate dimensions, time and filter, and then multiplied to form the final attention map. Residual-like fusion structure is used to append the attention map to the input feature map for adaptive feature refinement. In addition, to get the global feature representation with less information loss, the generalized mean pooling is introduced. To prove the efficacy of the proposed method, we have compared with two baseline method on sleep-EDF data set with different setting of the framework and input channel type, the experimental results show that the paper model has achieved significant improvements in terms of overall accuracy, Cohen's kappa, MF1, sensitivity and specificity. The performance of the proposed network is compared with that of the state-of-the-art algorithms with an overall accuracy of 83.4%, a macro F1-score of 77.3%, κ=0.77, sensitivity=77.1% and specificity=95.4%, respectively. The experimental results demonstrate the superiority of the proposed network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.