Abstract
It is essential for researchers to have a proper interpretation of remote sensing images (RSIs) and precise semantic labeling of their component parts. Although FCN (Fully Convolutional Networks)-like deep convolutional network architectures have been widely applied in the perception of autonomous cars, there are still two challenges in the semantic segmentation of RSIs. The first is to identify details in high-resolution images with complex scenes and to solve the class-mismatch issues; the second is to capture the edge of objects finely without being confused by the surroundings. HRNET has the characteristics of maintaining high-resolution representation by fusing feature information with parallel multi-resolution convolution branches. We adopt HRNET as a backbone and propose to incorporate the Class-Oriented Region Attention Module (CRAM) and Class-Oriented Context Fusion Module (CCFM) to analyze the relationships between classes and patch regions and between classes and local or global pixels, respectively. Thus, the perception capability of the model for the detailed part in the aerial image can be enhanced. We leverage these modules to develop an end-to-end semantic segmentation model for aerial images and validate it on the ISPRS Potsdam and Vaihingen datasets. The experimental results show that our model improves the baseline accuracy and outperforms some commonly used CNN architectures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.