Abstract

It has been proven that only a small fraction of the neoantigens presented by major histocompatibility complex (MHC) class I molecules on the cell surface can elicit T cells. This restriction can be attributed to the binding specificity of T cell receptor (TCR) and peptide-MHC complex (pMHC). Computational prediction of T cells binding to neoantigens is a challenging and unresolved task. In this paper, we proposed an attention-aware contrastive learning model, ATMTCR, to infer the TCR-pMHC binding specificity. For each TCR sequence, we used a transformer encoder to transform it to latent representation, and then masked a percentage of amino acids guided by attention weights to generate its contrastive view. Compared to fully-supervised baseline model, we verified that contrastive learning-based pretraining on large-scale TCR sequences significantly improved the prediction performance of downstream tasks. Interestingly, masking a percentage of amino acids with low attention weights yielded best performance compared to other masking strategies. Comparison experiments on two independent datasets demonstrated our method achieved better performance than other existing algorithms. Moreover, we identified important amino acids and their positional preference through attention weights, which indicated the potential interpretability of our proposed model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.