Abstract

TiH 2 particles with fcc structure can be produced in an atmosphere of reduced pressure of H 2, instead of an ordinary inactive gas, by the gas evaporation technique. The habit of the particles grown in the intermediate zone of a smoke is determined by means of electron microscope to be dodecahedral and consists of 8 {111} and 4 {100}. As in the case of Ti particles, the growth mechanism can be considered as follows: The bcc TiH 2 particles initially formed, the high temperature phase, are transformed into fcc structure, the low temperature phase, through the martensite transformation with a slight change of the habit, from the rhombic dodecahedral to simple dodecahedral. For the preparation of amorphous particles, first the quenching rate of a particle, d T/d t was estimated to be more than 10 4°C/s. The quenching rate was estimated from measurements of the temperature gradient around the evaporation source, d T/d x and the rising velocity of the particles along the convection flow of residual gas, d x/d t. The preparation of ultrafine particles of Pd 80Si 20 chosen as a test material was attempted. However, the particles showed crystalline rather than amorphous structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call