Abstract

The routine procedure of estrous cycle synchronization in pigs allows for the use of gonadotropins to stimulate ovarian activity. The applied protocols of eCG and hFSH priming similarly affected development of ovarian follicles in two classes 3–6 mm and >6 mm of diameter, however, the number of small follicles (<3 mm) was 2-fold higher in hFSH- than in eCG-primed prepubertal gilts. The attainment of sexual maturity increased concentration of estradiol, testosterone and androstenedione in the follicular fluid of hFSH/eCG-primed gilts, however, prostaglandin E2 and F2α metabolite increased in mature hFSH- and eCG-primed gilts, respectively. The maturity increased mRNA and/or protein expression of key steroidogenic enzymes, prostaglandin synthases or luteinizing hormone receptors in follicular walls. Both hormonal primers played a moderate role in affecting expression of steroidogenic enzymes in follicular walls. In vitro studies showed higher estradiol production in r-hLH (p = 0.04)- and r-hCG (p = 0.049)-stimulated follicular walls of mature gilts than in prepubertal hFSH-primed gilts. Both ovulatory triggers decreased the abundance of LHCG/FSH mRNA receptors in follicular walls, which mimic downregulation of these receptors by a preovulatory LH surge, confirmed in vivo. These data revealed the importance of sexual maturity in the protection of the estrogenic environment, and the selective, moderate role of eCG and FSH in the activation of steroidogenic enzymes in preovulatory follicles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call