Abstract

Smooth surfaces are conducive to improving the lubrication of gears in mechanical systems. In this study, chemical mechanical polishing (CMP) was used to process 18CrNiMo7-6 case hardening steel, a typical material for gears. The results reveal that compared with formic acid and oxalic acid, citric acid can be used as a suitable complexing agent without causing apparent corrosion, probably due to the fact of its relatively stable adsorption. A synergistic effect exists between citric acid and H2O2. At pH 3, with 0.067 M citric acid and 1 wt% H2O2, a satisfactory CMP performance (i.e., a 514 nm/min material removal rate (MRR) and a 0.85 nm surface roughness Sa) was achieved. After polishing, no observable defects were found on the surface, and no discernible processing damage occurred to the substrate. In terms of the CMP’s mechanism, iron is first oxidized to Fe2+ and Fe3+, which then react with citric acid to form complexes. On the one hand, most of the complexes may stay on the surface to prevent further corrosion and, thus, the surface quality is excellent. On the other hand, the complexes may reduce the surface integrity and, thus, the MRR is high. The findings open new avenues for attaining ultra-smooth steel surfaces with CMP through controlling corrosive wear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.