Abstract
The relative entropy of entanglement E_R is defined as the distance of a multipartite quantum state from the set of separable states as measured by the quantum relative entropy. We show that this optimisation is always achieved, i.e. any state admits a closest separable state, even in infinite dimensions; also, E_R is everywhere lower semi-continuous. We use this to derive a dual variational expression for E_R in terms of an external supremum instead of infimum. These results, which seem to have gone unnoticed so far, hold not only for the relative entropy of entanglement and its multipartite generalisations, but also for many other similar resource quantifiers, such as the relative entropy of non-Gaussianity, of non-classicality, of Wigner negativity—more generally, all relative entropy distances from the sets of states with non-negative lambda -quasi-probability distribution. The crucial hypothesis underpinning all these applications is the weak*-closedness of the cone generated by free states, and for this reason, the techniques we develop involve a bouquet of classical results from functional analysis. We complement our analysis by giving explicit and asymptotically tight continuity estimates for E_R and closely related quantities in the presence of an energy constraint.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.