Abstract

In this paper, we present a deterministic attack on (EC)DSA signature scheme, providing that several signatures are known such that the corresponding ephemeral keys share a certain amount of bits without knowing their value. By eliminating the shared blocks of bits between the ephemeral keys, we get a lattice of dimension equal to the number of signatures having a vector containing the private key. We compute an upper bound for the distance of this vector from a target vector, and next, using Kannan's enumeration algorithm, we determine it and hence the secret key. The attack can be made highly efficient by appropriately selecting the number of shared bits and the number of signatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.