Abstract
While machine learning systems are known to be vulnerable to data-manipulation attacks at both training and deployment time, little is known about how to adapt attacks when the defender transforms data prior to model estimation. We consider the setting where the defender Bob first transforms the data then learns a model from the result; Alice, the attacker, perturbs Bob’s input data prior to him transforming it. We develop a general-purpose “plug and play” framework for gradient-based attacks based on matrix differentials, focusing on ordinary least-squares linear regression. This allows learning algorithms and data transformations to be paired and composed arbitrarily: attacks can be adapted through the use of the chain rule—analogous to backpropagation on neural network parameters—to compositional learning maps. Bestresponse attacks can be computed through matrix multiplications from a library of attack matrices for transformations and learners. Our treatment of linear regression extends state-ofthe-art attacks at training time, by permitting the attacker to affect both features and targets optimally and simultaneously. We explore several transformations broadly used across machine learning with a driving motivation for our work being autogressive modeling. There, Bob transforms a univariate time series into a matrix of observations and vector of target values which can then be fed into standard learners. Under this learning reduction, a perturbation from Alice to a single value of the time series affects features of several data points along with target values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.