Abstract
The distributed nature of distributed learning renders the learning process susceptible to model poisoning attacks. Most existing countermeasures are designed based on a presumed attack model, and can only perform under the presumed attack model. However, in reality a distributed learning system typically does not have the luxury of knowing the attack model it is going to be actually facing in its operation when the learning system is deployed, thus constituting a zero-day vulnerability of the system that has been largely overlooked so far. In this paper, we study the attack-model-agnostic defense mechanisms for distributed learning, which are capable of countering a wide-spectrum of model poisoning attacks without relying on assumptions of the specific attack model, and hence alleviating the zero-day vulnerability of the system. Extensive experiments are performed to verify the effectiveness of the proposed defense.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.