Abstract

The force required to dislodge mussels from the substrate is known as attachment strength. This feature has been mostly studied in mytilids inhabiting the intertidal of consolidated rocky substrates, whereas it has been less studied in sedimentary substrates. The aim of this study was to evaluate the attachment strength and the number of byssal threads ofBrachidontes rodrigueziiin two sites with mobile substrates in San Antonio Bay, Argentina [Punta Verde (PV) and Punta Delgado (PD)]. PV has relatively higher current velocities and coarser grain size than PD. Along coastal line transects at two different levels of the mid-intertidal of each site, the attachment strength was measured. The number of byssal threads in collected mytilids and the weight of the sediment adhered to them were recorded in the lab. The attachment strength, the number of byssal threads and the sediment adhered to the byssus differed significantly between levels and sites. Mytilids from the mid-level of both sites where the density was relatively lower, had a significantly greater number of byssal threads and higher weight of sediment adhered. This study reveals that a high amount of coarse sediment adhered to the byssus affects the attachment strength ofB. rodrigueziiin ecosystems relative to unstable substrates. We underline the importance of mobile substrates in understanding attachment features (attachment strength and byssal threads) of mytilids in this unstable ecosystem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.