Abstract

BackgroundDirect attachment of tendons to metallic implants is important in orthopedics. Tissue integration depends on scaffold microstructure and composition. This study evaluated the effect of pore size of titanium on the viability and function of fibroblasts and tenocytes in a dynamic bioreactor.MethodsStandardized Ti porous cylinders with 3 pore sizes (400, 700, and 1000 μm) were seeded with fibroblasts or tenocytes (4500 cells/μL) in silicon tubes. Cells were analyzed via alamarBlue (AB) assay in addition to scanning electron microscopy at day 7 (fibroblasts) or day 8 (tenocytes) and day 15. AB functions as a cell health indicator where functional living cells reduce the resazurin dye (blue) in the solution to resorufin (pink), and cell viability can be quantified via spectroscopy.ResultsAt day 7, fibroblasts cultured on all sizes reduced AB, with significant differences noted between 400 vs 1000 μm (P = .013) and 700 vs 1000 μm (P = .001). At day 15, fibroblasts reduced AB on all sizes with a significant difference noted between 700 vs 1000 μm (P = .004). Fibroblasts on all 3 pore sizes increased AB reduction from day 7 to day 15. Tenocytes reduced AB with significant differences between the 400 vs 700 μm (P = .049) and the 400 vs 1000 μm pore sizes at day 8. In contrast, tenocyte reduction of AB decreased from day 8 to day 15. Scanning electron microscopy performed on fibroblast cylinders showed fibroblasts reached the surface of the cylinders, confirming interconnectivity.ConclusionsWhile both fibroblasts and tenocytes penetrated the pores, fibroblasts preferred larger size, whereas tenocytes favored smaller size. Results are encouraging since soft-tissue attachment to a metallic scaffold is difficult but clinically desirable. Future studies could be performed in an in vivo animal model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call