Abstract
The standard dyadic Green function description of the electromagnetic field generated by an electric point dipole is modified (and corrected) so that a rigorous classical theory for the attached and radiated parts of the near field appears. The present propagator formalism follows from analysis of the transverse and longitudinal dipole electrodynamics. Elimination of both the transverse and the longitudinal self-fields leads to a description of the radiated dipole field that enables one to obtain the associated energy flux in the near- and mid-field zones also and that is correctly retarded (with the vacuum speed of light) everywhere in space. The related retarded transverse propagator exists in the time (space) domain, whereas the standard propagator exists only in the frequency (space) domain. As a forerunner to an analysis of the Weyl expansions for the standard, longitudinal self-field and retarded transverse propagators, the plane-wave mode expansions of these propagators are investigated, and contour integrations are specified in such a manner that the rigorous Green function description is regained. It is found that, in order for the retarded transverse propagator description to be consistent in the near-field zone, the Weyl expansion for this propagator has to contain evanescent components not only for wave numbers larger than the vacuum wave number but in the entire angular spectrum. The present theory may influence our view of optical near-field phenomena and (classical) photon tunneling because in both of these fields a proper identification of attached and radiated fields seems needed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.