Abstract

Atypical teratoid/rhabdoid tumors (ATRT) are pediatric brain neoplasms that are known for their heterogeneity concerning pathophysiology and outcome. The three genetically rather uniform but epigenetically distinct molecular subgroups of ATRT alone do not sufficiently explain the clinical heterogeneity. Therefore, we examined the tumor microenvironment (TME) in the context of tumor diversity. By using multiplex-immunofluorescent staining and single-cell RNA sequencing (scRNA-seq) we unveiled the pan-macrophage marker CD68 as a subgroup-independent negative prognostic marker for survival of ATRT patients. ScRNA-seq analysis of murine ATRT-SHH, ATRT-MYC and extracranial RT (eRT) provide a delineation of the TME, which is predominantly infiltrated by myeloid cells: more specifically a microglia-enriched niche in ATRT-SHH and a bone marrow-derived macrophage infiltration in ATRT-MYC and eRT. Exploring the cell-cell communication of tumor cells with tumor-associated immune cells, we found that Cd68+ tumor-associated macrophages (TAMs) are central to intercellular communication with tumor cells. Moreover, we uncovered distinct tumor phenotypes in murine ATRT-MYC that share genetic traits with TAMs. These intermediary cells considerably increase the intratumoral heterogeneity of ATRT-MYC tumors. In vitro co-culture experiments recapitulated the capability of ATRT-MYC cells to interchange cell material with macrophages extensively, in contrast to ATRT-SHH cells. We found that microglia are less involved in the exchange of information with ATRT cells and that direct contact is a prerequisite for incorporation. A relapse xenograft model implied that intermediary cells are involved in the acquisition of chemotherapy resistance. We show evidence that TAM-tumor cell interaction is one mechanism of chemotherapy resistance and relapse in ATRT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.