Abstract

AbstractSynthesis of α,ω-allyl-terminated telechelic macromonomers based on poly(tert-butyl methacrylate) (poly(t-BMA)) and poly(methacrylic acid) (poly(MAA)) was studied with the aim of preparing end-linked gels and hydrogels. Low molecular weight α-allyl-terminated poly(t-BMA) macromonomers with narrow polydispersities (Mw/Mn = 1.16) were synthesized via controlled atom transfer radical polymerization (ATRP) using a Cu(I)Br/N,N,N',N',N',N'-hexamethyltriethylenetetraamine catalyst system in conjunction with an allyl-2-bromoisobutyrate as the functional initiator. The polymerizations exhibited a linear increase of molecular weight in direct proportion to the monomer conversion and first-order kinetics with respect to monomer concentration. No significant difference was found between using polar or non-polar solvents (tetrahydrofuran or benzene, respectively). Optimization of reaction conditions to obtain the highest degree of active terminal bromine is discussed. Quenching the ATRP reaction with allyltributyltin yielded α,ω-allyl-terminated poly(t-BMA) macromonomers by replacing the terminal bromine with ω-allyl functional group. Poly(MAA) macromonomers were prepared by deprotection of the tert-butyl group from α,ω-allyl-terminated poly(t-BMA) macromonomers using concentrated trifluoroacetic acid at room temperature. Successful synthetic steps were confirmed by 1H NMR, FT-IR and MALDI-TOF MS analyses. The α,ω-allyl-terminated macromonomers were proven to be candidates for further polymerization by forming end-linked, non-soluble gels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call