Abstract
The synthetic control of atropoisomerism along C-N bonds is a major challenge, and methods that allow C-N atroposelective bond formation are rare. This is a problem because each atropoisomer can feature starkly differentiated biological properties. Yet, among the three most practical and applicable classical amination methods available: 1) the Cu-catalyzed Ullmann-Goldberg reaction, 2) the Pd-catalyzed Buchwald-Hartwig reaction, and 3) the Cu-catalyzed Chan-Evans-Lam reaction, none has truly been rendered atroposelective at the newly formed C-N bond. The first ever Chan-Evans-Lam atroposelective amination is herein described with a simple copper catalyst and newly designed PyrOx chiral ligand. This method should find important applications in asymmetric synthesis, in particular for medicinal chemistry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.