Abstract

The atropisomerism of novel 2,3-dihydro-1H-pyrimido[1,2-a]quinoxaline 6-oxides 1 bearing dissymmetric (ortho-substituted) 5-aryl residues and the homologous 1,2-dihydroimidazo[1,2-a]quinoxaline 5-oxides 2 was investigated. The existence of a chiral axis was demonstrated for compound 1a by X-ray diffraction and by DFT calculations of the ground state geometry. The resolution of the atropisomeric enantiomers on chiral stationary phases is reported. The barriers to enantiomerization were determined by off-line racemization studies and/or by treatment of the plateau-shaped chromatograms during chromatography on chiral support. A clear ring size effect was evidenced. In all cases, six-membered amidine derivatives 1 showed higher barriers than the corresponding lower homologues 2, which also display lower sensitivity to the substituent size. Transition states for the interconversion of the atropisomers were located using DFT calculations, and involved the interaction of the ortho substituent with the formally sp(2) nitrogen in the amidine moiety. In contrast, in the most favored enantiomerization transition state of the 2-nitro derivative the ortho substituent is close to the N-oxide group.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.