Abstract

Structural imaging of the cholinergic basal forebrain may provide a biomarker for cholinergic system integrity that can be used in motor and non-motor outcome studies in Parkinson's disease. However, no prior studies have validated these structural metrics with cholinergic nerve terminal in vivo imaging in Parkinson's disease. Here, we correlate cholinergic basal forebrain morphometry with the topography of vesicular acetylcholine transporter in a large Parkinson's sample. [18 F]-Fluoroethoxybenzovesamicol vesicular acetylcholine transporter positron emission tomography was carried out in 101 non-demented people with Parkinson's (76.24% male, mean age 67.6 ± 7.72 years, disease duration 5.7± 4.4 years). Subregional cholinergic basal forebrain volumes were measured using magnetic resonance imaging morphometry. Relationships were assessed via volume-of-interest based correlation analysis. Subregional volumes of the cholinergic basal forebrain predicted cholinergic nerve terminal loss, with most robust correlations occurring between the posterior cholinergic basal forebrain and temporofrontal, insula, cingulum, and hippocampal regions, and with modest correlations in parieto-occipital regions. Hippocampal correlations were not limited to the cholinergic basal forebrain subregion Ch1-2. Correlations were also observed in the striatum, thalamus, and brainstem. Cholinergic basal forebrain morphometry is a robust predictor of regional cerebral vesicular acetylcholine transporter bindings, especially in the anterior brain. The relative lack of correlation between parieto-occipital binding and basal forebrain volumes may reflect the presence of more diffuse synaptopathy in the posterior cortex due to etiologies that extend well beyond the cholinergic system. ANN NEUROL 2023;93:991-998.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.