Abstract

Background: The neuropathology of patients with frontotemporal dementia (FTD) or amyotrophic lateral sclerosis (ALS) due to a C9orf72 mutation is characterized by two distinct types of characteristic protein depositions containing either TDP-43 or so-called dipeptide repeat proteins that extend beyond frontal and temporal regions. Thalamus and cerebellum seem to be preferentially affected by the dipeptide repeat pathology unique to C9orf72 mutation carriers.Objective: This study aimed to determine if mutation carriers showed an enhanced degree of thalamic and cerebellar atrophy compared to sporadic patients or healthy controls.Methods: Atlas-based volumetry was performed in 13 affected C9orf72 FTD, ALS and FTD/ALS patients, 45 sporadic FTD and FTD/ALS patients and 19 healthy controls. Volumes and laterality indices showing significant differences between mutation carriers and sporadic patients were subjected to binary logistic regression to determine the best predictor of mutation carrier status.Results: Compared to sporadic patients, mutation carriers showed a significant volume reduction of the thalamus, which was most striking in the occipital, temporal and prefrontal subregion of the thalamus. Disease severity measured by mini mental status examination (MMSE) and FTD modified Clinical Dementia Rating Scale Sum of Boxes (FTD-CDR-SOB) significantly correlated with volume reduction in the aforementioned thalamic subregions. No significant atrophy of cerebellar regions could be detected. A logistic regression model using the volume of the prefrontal and the laterality index of the occipital subregion of the thalamus as predictor variables resulted in an area under the curve (AUC) of 0.88 while a model using overall thalamic volume still resulted in an AUC of 0.82.Conclusion: Our data show that thalamic atrophy in C9orf72 mutation carriers goes beyond the expected atrophy in the prefrontal and temporal subregion and is in good agreement with the cortical atrophy pattern described in C9orf72 mutation carriers, indicating a retrograde degeneration of functionally connected regions. Clinical relevance of the detected thalamic atrophy is illustrated by a correlation with disease severity. Furthermore, the findings suggest MRI volumetry of the thalamus to be of high predictive value in differentiating C9orf72 mutation carriers from patients with sporadic FTD.

Highlights

  • Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are heterogeneous neurodegenerative disorders that are associated with one another in approximately 15% of the cases (Lomen-Hoerth et al, 2002)

  • This is in accordance with previous reports of significant thalamic atrophy in C9orf72 mutation carriers (Sha et al, 2012; Mahoney et al, 2012; Irwin et al, 2013)

  • We show a significant volume reduction of certain thalamic subregions of symptomatic C9orf72 mutation carriers compared to sporadic patients and healthy controls (HC) and reveals overall thalamic volume to be a useful predictor of C9orf72 mutation carrier status

Read more

Summary

Introduction

Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are heterogeneous neurodegenerative disorders that are associated with one another in approximately 15% of the cases (Lomen-Hoerth et al, 2002). ALS is a motor neuron disease that is characterized by progressive degeneration of upper and lower motor neurons. It typically manifests with progressive muscle weakness, muscular atrophy, spasticity and fasciculations (Lomen-Hoerth et al, 2002). The neuropathology of patients with frontotemporal dementia (FTD) or amyotrophic lateral sclerosis (ALS) due to a C9orf mutation is characterized by two distinct types of characteristic protein depositions containing either TDP-43 or so-called dipeptide repeat proteins that extend beyond frontal and temporal regions. Thalamus and cerebellum seem to be preferentially affected by the dipeptide repeat pathology unique to C9orf mutation carriers

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.