Abstract

Wine production processes still rely on post-production evaluation and off-site laboratory analyses to ensure the quality of the final product. Here we propose an at-line methodology that combines a portable ATR-MIR spectrometer and multivariate analysis to control the alcoholic fermentation process and to detect wine fermentation problems. In total, 36 microvinifications were conducted, 14 in normal fermentation conditions (NFC) and 22 intentionally contaminated fermentations (ICF) with different lactic acid bacteria (LAB) concentrations. ATR-MIR measurements were collected during alcoholic and malolactic fermentations and relative density, pH, and l-malic acid were analyzed by traditional methods. Partial Least Squares Regression could suitably predict density and pH in fermenting samples (root mean squared errors of prediction of 0.0014 g mL−1 and 0.06 respectively). With regard to ICF, LAB contamination was detected by multivariate discriminant analysis when the difference in l-malic acid concentration between NFC and ICF was in the order of 0.7–0.8 g L−1, before the end of malolactic fermentation. This methodology shows great potential as a fast and simple at-line analysis tool for detecting fermentation problems at an early stage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.