Abstract

RNA silencing is a mechanism involved in gene regulation during development and anti-viral defense in plants and animals. Although many viral suppressors of this mechanism have been described up to now, this is not the case for endogenous suppressors. We have identified a novel endogenous suppressor in plants: RNase L inhibitor (RLI) of Arabidopsis thaliana. RLI is a very conserved protein among eukaryotes and archaea. It was first known as component of the interferon-induced mammalian 2'-5' oligoadenylate (2-5A) anti-viral pathway. This protein is in several organisms responsible for essential functions, which are not related to the 2-5A pathway, like ribosome biogenesis and translation initiation. Arabidopsis has two RLI paralogs. We have described in detail the expression pattern of one of these paralogs (AtRLI2), which is ubiquitously expressed in all plant organs during different developmental stages. Infiltrating Nicotiana benthamiana green fluorescent protein (GFP)-transgenic line with Agrobacterium strains harboring GFP and AtRLI2, we proved that AtRLI2 suppresses silencing at the local and at the systemic level, reducing drastically the amount of GFP small interfering RNAs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call