Abstract

We present an ATRIPPI model for analyzing protein–protein interactions. This model is a 167-atom-type and residue-specific interaction preferences with distance bins derived from 641 co-crystallized protein–protein interfaces. The ATRIPPI model is able to yield physical meanings of hydrogen bonding, disulfide bonding, electrostatic interactions, van der Waals and aromatic–aromatic interactions. We applied this model to identify the native states and near-native complex structures on 17 bound and 17 unbound complexes from thousands of decoy structures. On average, 77.5% structures (155 structures) of top rank 200 structures are closed to the native structure. These results suggest that the ATRIPPI model is able to keep the advantages of both atom–atom and residue–residue interactions and is a potential knowledge-based scoring function for protein–protein docking methods. We believe that our model is robust and provides biological meanings to support protein–protein interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.