Abstract

Developmental abnormalities in endocardial cushions frequently contribute to congenital heart malformations including septal and valvular defects. While compelling evidence has been presented to demonstrate that members of the TGF-β superfamily are capable of inducing endothelial-to-mesenchymal transdifferentiation in the atrioventricular canal, and thus play a key role in formation of endocardial cushions, the detailed signaling mechanisms of this important developmental process, especially in vivo, are still poorly known. Several type I receptors (ALKs) for members of the TGF-β superfamily are expressed in the myocardium and endocardium of the developing heart, including the atrioventricular canal. However, analysis of their functional role during mammalian development has been significantly complicated by the fact that deletion of the type I receptors in mouse embryos often leads to early embryonal lethality. Here, we used the Cre/loxP system for endothelial-specific deletion of the type I receptor Alk2 in mouse embryos. The endothelial-specific Alk2 mutant mice display defects in atrioventricular septa and valves, which result from a failure of endocardial cells to appropriately transdifferentiate into the mesenchyme in the AV canal. Endocardial cells deficient in Alk2 demonstrate decreased expression of Msx1 and Snail, and reduced phosphorylation of BMP and TGF-β Smads. Moreover, we show that endocardial cells lacking Alk2 fail to delaminate from AV canal explants. Collectively, these results indicate that the BMP type I receptor ALK2 in endothelial cells plays a critical non-redundant role in early phases of endocardial cushion formation during cardiac morphogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.