Abstract

The receptor for atrial natriuretic peptide (ANP) in the rat renal papilla was characterized pharmacologically. After solubilization and irreversible binding with disuccinimidylsuberate, it was shown on sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) to be made of a single peptide of 125 kDa. The regulation of the renal papillary ANP receptor was studied in deoxycorticosterone acetate (DOCA)-salt hypertensive rats. DOCA-salt rats had suppressed plasma renin activity and increased plasma ANP concentrations (408 +/- 35 vs. 133 +/- 12 pg/ml in uninephrectomized controls, P less than 0.01). The renal papilla was hypertrophied in DOCA-salt hypertensive rats (93 +/- 1 vs. 52 +/- 1 mg, P less than 0.01). The density of ANP sites in the papilla was significantly higher in DOCA-salt rats (141 +/- 31 fmol/papilla) than in controls (34 +/- 8 fmol/papilla, P less than 0.01). Affinity of sites in DOCA-salt rats and controls was similar. The production of guanosine 3',5'-cyclic monophosphate (cGMP) in renal papilla in response to ANP was significantly higher in DOCA-salt rats. In contrast to the renal papillary ANP receptor, acid-washed vascular and glomerular ANP sites were significantly decreased in density in DOCA-salt hypertensive rats. In blood vessels and glomeruli, both the high- and low-molecular mass receptor (as detected on SDS-PAGE under reducing conditions) was proportionately decreased in density in DOCA-salt hypertensive rats. The present results suggest that an increased number of ANP receptors and exaggerated cGMP response to ANP in the renal papilla may underlie the increased natriuretic responsiveness of the kidney to ANP in DOCA-salt hypertensive rats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.