Abstract

Hypoxic stress upsets the balance in the normal relationships between mitogenic and growth inhibiting pathways in lung, resulting in pulmonary vascular remodeling characterized by hyperplasia of pulmonary arterial smooth muscle cells (PASMCs) and fibroblasts and enhanced deposition of extracellular matrix. Atrial natriuretic peptide (ANP) reduces pulmonary vascular resistance and attenuates hypoxia-induced pulmonary hypertension in vivo and PASMC proliferation and collagen synthesis in vitro. The current study utilized an ANP null mouse model ( Nppa−/−) to test the hypothesis that ANP modulates the pulmonary vascular and alveolar remodeling response to normobaric hypoxic stress. Nine-10 wk old male ANP null ( Nppa−/−) and wild type nontransgenic (NTG) mice were exposed to chronic hypoxia (10% O 2, 1 atm) or air for 6 wks. Measurement: pulmonary hypertension, right ventricular hypertrophy, and pulmonary arterial and alveolar remodeling were assessed. Hypoxia-induced pulmonary arterial hypertrophy and muscularization were significantly increased in Nppa−/− mice compared to NTG controls. Furthermore, the stimulatory effects of hypoxia on alveolar myofibroblast transformation (8.2 and 5.4 fold increases in Nppa−/− and NTG mice, respectively) and expression of extracellular matrix molecule (including osteopontin [OPN] and periostin [PN]) mRNA in whole lung were exaggerated in Nppa−/− mice compared to NTG controls. Combined with our previous finding that ANP signaling attenuates transforming growth factor (TGF)-β-induced expression of OPN and PN in isolated PASMCs, the current study supports the hypothesis that endogenous ANP plays an important anti-fibrogenic role in the pulmonary vascular adaptation to chronic hypoxia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.