Abstract

The atrial natriuretic peptide (ANP)-C receptor is generally believed to clear ANP; however, the ANP-C receptor may serve to reduce cAMP by inhibiting adenylate cyclase. ANP decreases endothelial permeability in coronary endothelial cell monolayers. We tested the hypothesis that part of this effect might be mediated by the ANP-C receptor. We used an endothelial cell monolayer from rat coronary endothelium and measured albumin flux. We applied either ANP or a ring-deleted ANP (C-ANP), which only stimulates the ANP-C receptor. ANP and C-ANP both decreased permeability from 100 pM to 100 nM by 60 and 30%, respectively. ANP increased endothelial cGMP contents 5.5-fold, whereas C-ANP had no effect. ANP reduced endothelial cAMP contents by 75%, which was only partly blocked by pertussis toxin. C-ANP also reduced cAMP; however, this effect was completely blocked by pertussis toxin. Protein kinase G inhibition blocked the ANP-mediated decrease in permeability by 50%. In contrast, pretreatment with pertussis toxin, in the face of protein kinase G inhibition, blocked the effect completely. C-ANP decreased permeability by half the amount of ANP. This C-ANP effect was completely blocked by pertussis toxin but not by protein kinase G inhibition. Isoproterenol (10 microM) increased permeability by almost 50%, which was completely blocked by ANP but only partially blocked by C-ANP. The C-ANP effect was blocked completely by pertussis toxin. Isoproterenol increased cAMP threefold, which was abolished by ANP. C-ANP reduced the isoproterenol-induced increase in cAMP by 50%. Isoproterenol had no effect on cGMP. We conclude that agonist binding to the ANP-C receptor inhibits cAMP production via a Gi protein-coupled signaling system. This inhibition may contribute to the decreased endothelial permeability evoked by ANP in this system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.