Abstract

Atrial natriuretic factors (ANFs) were tested for their effects on cyclic GMP production in two neurally derived cell lines, the C6-2B rat glioma cells and the PC12 rat pheochromocytoma cells. These cell lines were selected because both are known to possess high amounts of the particulate form of guanylate cyclase, a proposed target of ANF in peripheral organs. Previous studies from our laboratory have shown that ANF selectively activates particulate, but not soluble, guanylate cyclase in homogenates of a variety of rat tissues and that one class of ANF receptor appears to be the same glycoprotein as particulate guanylate cyclase. In the present study we found that four analogs of ANF stimulate cyclic GMP accumulation in both C6-2B and PC12 cells with the rank order of potency being atriopeptin III = atriopeptin II greater than human atrial natriuretic polypeptide greater than atriopeptin I. Atriopeptin II (100 nM) for 20 min elevated cyclic GMP content in C6-2B cells fourfold and in PC12 cells 12-fold. Atriopeptin II (100 nM) for 20 min also stimulated the efflux of cyclic GMP from both C6-2B cells (47-fold) and PC12 cells (12-fold). Accumulation of cyclic GMP in both cells and media was enhanced by preincubation with the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (250 microM). After 20 min of exposure to atriopeptin II, cyclic GMP amounts in the media were equal to or greater than the amounts in the cells.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.