Abstract
Background and objectiveThe incidence of atrial fibrillation is increasing annually. We develop an automatic detection system, which is of great significance for the early detection and treatment of atrial fibrillation. This can lead to the reduction of the incidence of critical illnesses and mortality. MethodsWe propose an atrial fibrillation detection algorithm based on multi-feature extraction and convolutional neural network of atrial activity via electrocardiograph signals, and compare its detection based on cluster analysis, one-versus-one rule and support vector machine, using accuracy, specificity, sensitivity and true positive rate as evaluation criteria. ResultsThe atrial fibrillation detection algorithm proposed in this paper has an accuracy rate of 98.92%, a specificity of 97.04%, a sensitivity of 97.19%, and a true positive rate of 96.47%. The average accuracy of the algorithms we compared is 80.26%, and the accuracy of our algorithm is 23.25% higher than this average pertaining to the other algorithms. ConclusionWe implemented an atrial fibrillation detection algorithm that meets the requirements of high accuracy, robustness and generalization ability. It has important clinical and social significance for early detection of atrial fibrillation, improvement of patient treatment plans and improvement of medical diagnosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.