Abstract

Medicaments essential for alleviation of diseases may sometime adversely affect dental health by eroding the enamel, owing to their acidic nature. It is therefore highly desirable to be able to detect these effects quickly and reliably. In this study, we evaluated the erosive capacity of four most commonly prescribed respiratory disease syrup medicaments on enamel using micro-energy-dispersive X-ray fluorescence spectrometry (µ-EDXRF) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). Fifty-five enamel fragments obtained from 30 bovine teeth were treated with artificial saliva (S), acebrofilin hydrochloride (AC), ambroxol hydrochloride (AM), bromhexine hydrochloride (BR), and salbutamol sulfate (SS); by immersing in 3mL of respective solutions for 1 min, three times a day at intervals of 1 hr, for 5 days. µ-EDXRF analysis of enamel surface did not reveal significant erosion caused by the medications. However, ATR-FTIR showed a detectable shift in the phosphate (PO4 ) antisymmetric stretching mode (ν3 ) at ∼985 cm-1 for AM, BR, and SS, indicating erosion. Multivariate statistical analysis showed that AC, AM, SS, and BR could be classified with 70%, 80%, 100%, and 100% efficiency from S (control), further highlighting the ability of ATR-FTIR to identify degree of erosion. This suggests ATR-FTIR may be used to rapidly and nondestructively investigate erosive effects of medicaments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.