Abstract

Pulmonary fibrosis can be caused by genetic abnormalities, autoimmune disorders or exposure to environmental pollutants. All these causes have in common the excessive production of oxidative stress species that initiate a cascade of molecular mechanism underlying fibrosis in a variety of organs, including lungs. The chemical name of Atrazine (ATR) is 6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine, and it is the most commonly used broad-spectrum herbicide in agricultural crops. Additionally, Bleomycin is a chemotherapeutic agent often used for different lymphoma with a seriously pulmonary complication. The most accredited hypothesis that may explain the mechanism of toxicity induced by ATR or bleomycin is exactly the production of reactive oxygen species (ROS) that leads to an unbalance in the physiological anti-oxidant system. However, until today, nobody has investigated the effect of ATR exposure during pulmonary fibrosis. Mice were subject to ATR exposure, to bleomycin injection or to both. At the end of experiment, the lungs and blood were collected. Additionally, we analyzed by different test such as open field, pole and rotarod test or other we investigated the effects of ATR or bleomycin exposure on behavior. Following ATR or bleomycin induction, we found a significant increase in lung damage, fibrosis, and oxidative stress. This condition was significantly worsened when the animals injected with bleomycin were also exposed to ATR. Additionally, we observed significant motor and non-motor impairment in animals exposed to ATR. Our study demonstrates that ATR exposure, decrease nuclear factor-erythroid 2-related factor (Nrf2) pathways in both lung and brain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call