Abstract

Atrazine (ATR) is a pesticide used widely throughout North America. Although not directly estrogenic, ATR treatment has been shown to increase aromatase activity in tumor cell lines. Thus, it is suggested that ATR can increase local tissue estrogen levels in estrogen sensitive target tissues through increased aromatase activity. Therefore the effect of ATR on aromatase activity was measured in human granulosa-lutein cell cultures, cells that abundantly express aromatase, and endometrial stromal cell (ESC) cultures, cells that do not express aromatase. Aromatase activity was quantified by the tritiated water method and the specificity of the assay was confirmed by co-incubation with 4-hydroxyandrostenedione, an irreversible inhibitor of the catalytic activity of aromatase. Aromatase activity in ATR treated (1-10 microm) granulosa-lutein cells was increased more than 2-fold compared with control cultures. There were no treatment related changes in cellular protein and thus it is suggested that the ATR-induced change in aromatase activity was not due to an increase in cell number. ATR-treatment had no effect on ESC aromatase activity at any concentration tested. Similarly, there was no effect of ATR treatment on human recombinant aromatase activity in our cell-free test system. Therefore it is concluded that microm concentrations of ATR can increase aromatase activity of human granulosa cells but not ESC and this effect is not elicited at the enzyme level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.