Abstract

AbstractLincolns municipal wellfield consists of 44 wells developed in an alluvial aquifer adjacent to the Platte River near Ashland, Nebraska Induced recharge from the river is the primary source of water for the wellfield. Wafer samples were collected on a periodic basis from the Platte River arid two transects of monitoring wells. These samples were analyzed for the herbicide atrazine, which was used as a tracer of induced recharge in this stream‐aquifer system. Atrazine concentrations in the river and aquifer were much less than 1.0 ppb during late fall and winter, but increased to as high as 18.9 ppb during spring and summer, associated with runoff from upgradient agricultural lands. There was approximately a 21‐day lag time from the first detection of increasing atrazine concentration in the river to the first detection in monitoring wells immediately adjacent to the river. This lag time was relatively constant throughout the year and from one year to the next, even with major fluctuations of river stage and wellfield production. This consistency of lag time indicated that the travel times from the river to the first set of monitoring wells immediately adjacent to the river were fairly constant.Paths of preferential flow were identified in the aquifer at a depth of 25 to 35 feet below land surface. This aquifer zone appeared to play a significant role in movement of water from beneath the river into the wellfield.Aquifer dispersivity was calculated using a method described by Hoehn and Santschi (1987). Macrodispersivity (AL) was shown to increase linearly over the scale of the wellfield. Calculated values of AL were within limits of other reported values for this type of aquifer material and agreed well with values reported by Hoehn and Santschi (1987); These findings will be extremely beneficial for planning and management of the municipal wellfield.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.