Abstract

Environmental pollutants, found in aquatic ecosystems, have been shown to have an effect on olfactory-mediated behaviors including feeding, mate attraction, and other important social behaviors. Crayfish are polytrophic, meaning that they feed on and become prey for all levels of the aquatic food web as well as are also important for the transfer of energy between benthic and terrestrial food webs. Because crayfish are a keystone species, it is important to investigate any factors that may affect their population size. Crayfish are active at night and rely heavily on their sensory appendages (e.g., antennulues, maxillipeds, and pereopods) to localize food sources. In this experiment, we investigated the effects of atrazine (ATR) exposure on the chemosensory responses of male and female crayfish to food odors. We exposed crayfish to environmentally relevant, sublethal levels of ATR [80 ppb (µg/L)] for 72 h and then examined the behavioral responses of both ATR-treated and control crayfish to food odor delivered from one end of a test arena. We used Noldus Ethovision XT software to measure odor localization and locomotory behaviors of crayfish in response to food (fish) odor. We found that control crayfish spent more time in the proximal region of the test arena and at the odor source compared with ATR-treated crayfish. Furthermore, there were no differences in the time spent moving and not moving, total distance travelled in the tank, and walking speed (cm/s) when control and ATR-treated crayfish were compared. Overall, this indicates that acute ATR exposure alters chemosensory abilities of crayfish, whereas overall motor function remains unchanged.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call