Abstract
The isolation and study of fungi within specific contexts yield valuable insights into the intricate relationships between fungi and ecosystems. Unlike culture-independent approaches, cultivation methods are advantageous in this context because they provide standardized replicates, specific species isolation, and easy sampling. This study aimed to understand the ecological process using a microcosm system with pesticide concentrations similar to those found in the soil, in contrast to high doses, from the isolation of the enriched community. The atrazine concentrations used were 0.02mg/kg (control treatment), 300ng/kg (treatment 1), and 3000ng/kg (treatment 2), using a 28-day microcosm system. Ultimately, the isolation resulted in 561 fungi classified into 76 morphospecies. The Ascomycota phylum was prevalent, with Purpureocillium, Aspergillus, and Trichoderma being consistently isolated, denoting robust and persistent genera. Diversity analyses showed that the control microcosms displayed more distinct fungal morphospecies, suggesting the influence of atrazine on fungal communities. Treatment 2 (higher atrazine concentration) showed a structure comparable to that of the control, whereas treatment 1 (lower atrazine concentration) differed significantly, indicating that atrazine concentration impacted community variance. Higher atrazine addition subtly altered ligninolytic fungal community dynamics, implying its potential for pesticide degradation. Finally, variations in atrazine concentrations triggered diverse community responses over time, shedding light on fungal resilience and adaptive strategies against pesticides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.