Abstract
Atrazine (ATZ) and ametryne (AME) inclusion complexes with 2-hydroxypropyl-β/γ-cyclodextrin (2-HP-β/γ-CD) in aqueous media and solid state were studied. Electrospray ionization mass spectrometry (ESI-MS), 1D (1H), and 2 D (DOSY, ROESY) nuclear magnetic resonance spectroscopy (NMR) were utilized to investigate and characterize the inclusion complexes in aqueous media. The solid complexes prepared by freeze-drying methods were subsequently subjected to characterization by Fourier transform infra-red spectroscopy (FT-IR) and powder X-ray diffraction (PXRD) technique. The formation constants were obtained by 2D DOSY NMR in DMSO‑d6, and were found to be 55 and 149 M−1, for ATZ@HPβ-CD and ATZ@HPγ-CD, respectively. For AME@HPβ-CD and AME@HPγ-CD, the formation constants were found to be 92 and 132 M−1, respectively. Molecular Dynamics (MD) simulations were performed to shed more light on the mode of guest inclusion into the hosts and to demarcate factors that affect the stability of these complexes in aqueous media. All complexes were found to be highly stable in aqueous media along the simulation run, which is in agreement with the experimental findings. The stability of these complexes is driven by the hydrophobic effects where both hosts encapsulate the guests deeply into the hydrophobic cavity. Furthermore, a number of hydrogen bonds between the hosts and the guests were found to contribute to the stability of these complexes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.