Abstract

Atraric acid (AA) is derived from lichens and is widely used in perfumes for its desirable scent. It has been reported as having anti-inflammatory and antioxidant activity. Hyperpigmentation is the underlying cause of a variety of dermatological diseases that have a significant impact on patients' quality of life and are frequently difficult to treat. This study aimed to explore the inhibitory effects of AA on hyperpigmentation in vitro and in vivo and its potential molecular mechanisms. The cytological results revealed that at a dose of 250 μM, AA may reduce melanin content and tyrosinase levels without causing cytotoxicity. Furthermore, the expression of melanocortin-1 receptor (MC1R), phosphorylated protein kinase A (pPKA) and phosphorylated cAMP response element binding protein (pCREB) were downregulated in AA-administrated cells. In vivo, histological analysis showed that AA could inhibit melanin production and tyrosinase activity, and 3% AA had the best activity, with almost no side effects. Furthermore, the results of Western blot analysis and RT-PCR suggested that AA may suppress the mRNA transcription of microphthalmia-associated transcription factor (MITF) protein and tyrosine protease by decreasing the expression of MC1R, consequently decreasing the phosphorylation of PKA and CREB. Finally, the MC1R inhibitor MSG606 verified the hypothesis that AA suppresses melanin formation by downregulating the PKA/CREB/MITF signaling pathway. Taken together, our study offers valuable information for the development of AA as a possible ingredient in skin-lightening cosmeceuticals and hyperpigmentation inhibitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call