Abstract

Atractylenolide III, a major component of the atractylodes macrocephala Koidz, derived from the rhizoma atractylodes, has been reported to produce various pharmacological effects including anti-aging, anti-inflammation, anti-tumor, and other effects. Growing evidence suggests that proinflammatory cytokines, such as interleukin (IL)-1, IL-6 and tumor necrosis factor (TNF)-α, are increased in depressed patients. The present study was aimed at investigating the antidepressant- and anxiolytic-like effects of atractylenolide III in lipopolysaccharide (LPS) challenge and chronic unpredictable mild stress (CUMS) rat model. We found that 30 mg/kg of atractylenolide III administered by oral gavage for 14 days, significantly reduced the immobility time in a forced swimming test (FST), but did not alter the number of crossings in an open field test (OFT), respectively. The results indicated that atractylenolide III has an antidepressant-like effect without affecting locomotor activity. We then used the LPS-induced depression model to assess the effects of atractylenolide III on behaviors in FST, sucrose preference test (SPT), and novelty-suppressed feeding test (NSFT). Interestingly, in addition to the antidepressant-like effects, 30 mg/kg of atractylenolide III also produced an anxiolytic-like effect. To further identify the antidepressant- and anxiolytic-like effects of atractylenolide III, we used the CUMS model with 28 consecutive days of the atractylenolide III treatment, followed by the SPT, FST, and NSFT. Atractylenolide III prevented CUMS-induced depressive- and anxiety-like behaviors in rats. To illustrate the underlying possible mechanisms of action of atractylenolide III, we measured the proinflammatory cytokines levels. The results showed that atractylenolide III decreased the proinflammatory cytokines levels in the hippocampus of CUMS exposed rats. In summary, our findings demonstrated that atractylenolide III produces antidepressant- and anxiolytic-like effects in rats, and these effects appear to be mediated by inhibition of hippocampal neuronal inflammation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call