Abstract
Here we show that rabbit Müller cell differentiation from radial glial progenitor cells is accompanied by a decreasing capability to respond to specific stimuli (depolarization and extracellular adenosine 5'-triphosphate [ATP]) with an elevation of intracellular calcium. Intracellular free calcium was recorded in retinal wholemounts from young (postnatal days [P] 2 to 31) and adult rabbits. Images were taken from the nerve fiber/ganglion cell layers where the endfeet of radial glial/ Müller cells can be identified after selective uptake of calcium-sensitive dyes. The area of responding endfeet was determined as the percentage of the total area occupied by Müller cell endfeet, as an estimate of the percentage of responding cells. In response to depolarization (50 mM potassium), an increase of intracellular free calcium occurred in 19% of cells from young postnatal retinae (P2-31) but only in 2% from adults. This depolarization-induced calcium rise was caused both by a calcium influx from extracellular space and by an intracellular calcium release. The latter response was inhibited by the P2 receptor blocker pyridoxal phosphate 6-azophenyl-2',4'-disulfonic acid (PPADS), indicating that extracellular calcium-independent ATP release into the extracellular space occurs during retinal depolarization. When extracellular ATP (200 microM) was applied, calcium responses were recorded in 83% of cells from young postnatal retinae (P2-6); in the course of further development, both the percentage of responding cells (7% in retinae from adult rabbits) and the amplitude of the calcium responses decreased. It is concluded that during the differentiation of immature radial glia into mature Müller cells, stimulus-evoked intracellular calcium signaling mechanisms change.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.