Abstract

Glutamine synthetase from the photosynthetic bacterium Rhodospirillum rubrum is the target of both ATP- and NAD-dependent modification. Incubation of R. rubrum cell supernatant with [alpha-32P]NAD results in the labeling of glutamine synthetase and two other unidentified proteins. Dinitrogenase reductase ADP-ribosyltransferase does not appear to be responsible for the modification of glutamine synthetase or the unidentified proteins. The [alpha-32P]ATP- and [alpha-32P] NAD-dependent modifications of R. rubrum glutamine synthetase appear to be exclusive and the two forms of modified glutamine synthetase are separable on two-dimensional gels. Loss of enzymatic activity by glutamine synthetase did not correlate with [alpha-32P]NAD labeling. This is in contrast to inactivation by nonphysiological ADP-ribosylation of other glutamine synthetases by an NAD:arginine ADP-ribosyltransferase from turkey erythrocytes (Moss, J., Watkins, P.A., Stanley, S.J., Purnell, M.R., and Kidwell, W.R. (1984) J. Biol. Chem. 259, 5100-5104). A 32P-labeled protein spot comigrates with the NAD-treated glutamine synthetase spot when glutamine synthetase purified from H3 32PO4-grown cells is analyzed on two-dimensional gels. The adenylylation site of R. rubrum glutamine synthetase has been determined to be Leu-(Asp)-Tyr-Leu-Pro-Pro-Glu-Glu-Leu-Met; the tyrosine residue is the site of modification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.