Abstract

Preliminary studies on yeast peroxisomes have suggested that the membrane of these organelles may contain a proton-pumping ATPase. It has been reported that peroxisome-associated activity is similar to the F0-F1 mitochondrial type ATPase in its sensitivity to azide at pH 9.0, but characteristics of the plasma membrane type ATPase are also evident in peroxisomal preparations in that they exhibit pH 6.5 activity that is sensitive to vanadate. A comparative study of the prominent organellar ATPase activities was undertaken as a probe into the existence of an enzyme that is unique to the peroxisome, and biochemical properties of yeast mitochondrial, plasma membrane, together with peroxisomally-associated H(+)-ATPases are presented. Enzyme marker analysis of sucrose gradient fractions revealed a high degree of correlation between the amount of azide-sensitive pH 9.0 ATPase activity and that of the mitochondrial membrane marker, cytochrome c oxidase, in peroxisomal preparations. Purified mitochondrial and peroxisomally-associated activities were highly sensitive to the presence of sodium azide, N,N' -dicyclohexylcarbodiimide (DCCD) and venturicidin when measured at pH 9.0. Comparisons of peroxisomal activities with those of the purified plasma membrane at pH 6.0 in the presence of azide showed similar sensitivity profiles with respect to inhibitors of yeast plasma membrane ATPases such as vanadate and p-chloromercuriphenyl-sulfonic acid (CMP). Purified peroxisomal membranes, furthermore, reacted with antibody to the mitochondrial F1 subunit (as revealed by Western blot analysis), and [35S] methionine-labeled, glucose-grown cells processed with unlabeled methanol-grown cells, yielded sucrose gradient fractions that were radioactive in bands that were also recognized by F1 antibody. Isolated fractions in these experiments had similar ratios of cpm:pH 9.0 ATPase activities, suggesting that this activity is mitochondrial in origin. The data presented for the characteristics of the peroxisomally-associated activity strongly suggest that the majority of the ATPase activity found in peroxisomal preparations is derived from other organelles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.