Abstract
Two chaperones, Atp23p and Atp10p, were previously shown to regulate the assembly of yeast mitochondrial ATP synthase, and extra expression of ATP23 was found to partially rescue an atp10 deletion mutant, by an unknown mechanism. Here, we identified that the residues 112-115 (LRDK) of Atp23p were required for its function in assisting assembly of the synthase, and demonstrated both functions of Atp23p, processing subunit 6 precursor and assisting assembly of the synthase, were required for the partial rescue of atp10 deletion mutant. By chasing labeling with isotope 35 S-methionine, we found the stability of subunit 6 of the synthase increased in atp10 null strain upon overexpression of ATP23. Further co-immunoprecipitation (Co-IP) and blue native PAGE experiments showed that Atp23p and Atp10p were physically associated with each other in wild type. Moreover, we revealed the expression level of Atp23p increased in atp10 null mutant compared with the wild type. Furthermore, we found that, after 72hours growth, atp10 null mutant showed leaky growth on respiratory substrates, presence of low level of subunit 6 and partial recovery of oligomycin sensitivity of mitochondrial ATPase activity. Further characterization revealed the expression of Atp23p increased after 24hours growth in the mutant. These results indicated, in atp10 null mutant, ATP10 deficiency could be partially complemented with increased expression of Atp23p by stabilizing some subunit 6 of the synthase. Taken together, this study revealed the two chaperones Atp23p and Atp10p coordinated to regulate the assembly of mitochondrial ATP synthase, which advanced our understanding of mechanism of assembly of yeast mitochondrial ATP synthase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: FASEB journal : official publication of the Federation of American Societies for Experimental Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.