Abstract
1. We analysed spontaneously active expiratory neurones (n = 48) of anaesthetized cats for the presence of ATP-sensitive K+ (KATP) channels. 2. Intracellular injection of ATP reversibly depolarized neurones during all phases of the respiratory cycle. During expiration, membrane potential depolarized by an average of 1.5 +/- 0.1 mV leading to a 25% increase of discharge frequency. During inspiration, ATP induced a 1.8 +/- 0.2 mV depolarization, which was accompanied by a maximum of 20% increase of input resistance (Rn). 3. Extracellular application of diazoxide, an agonist of KATP channels, resulted in reversible membrane hyperpolarization in 68% of neurones (n = 19). This hyperpolarization (2.5 mV during expiration and 3.1 mV during inspiration) was accompanied by a 22% decrease in Rn. 4. Extracellular application of tolbutamide and glibenclamide, two antagonists of KATP channels, evoked reversible depolarizations in 76% of neurones (n = 21). The depolarization was relatively constant throughout the respiratory cycle (1.4 mV during expiration and 2.3 mV during inspiration). Rn increased by 22%. 5. The same sulphonylureas also changed the steepness of membrane depolarization when neurones escaped spontaneous synaptic inhibition during postinspiration. Extracellularly applied tolbutamide and glibenclamide increased the steepness of depolarization by 21%, while diazoxide reduced it by 20%. 6. Antagonism of drugs was verified by simultaneous extra- and intracellular application of diazoxide and glibenclamide, respectively. 7. During voltage clamp at holding potential at -60 to -67 mV, intracellular or extracellular application of tolbutamide and glibenclamide blocked a persistent outward current. 8. We conclude that KATP channels are functional in expiratory neurones of adult cats and contribute to the control of excitability even during normoxia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.