Abstract
Liposomal delivery vehicles can dramatically enhance drug transport. However, their clinical application requires enhanced control over content release at diseased sites. For this reason, triggered release strategies have been explored, although a limited toolbox of stimuli has thus far been developed. Here, we report a novel strategy for stimuli-responsive liposomes that release encapsulated contents in the presence of phosphorylated small molecules. Our formulation efforts culminated in selective cargo release driven by ATP, a universal energy source that is upregulated in diseases such as cancer. Specifically, we developed lipid switches 1a-b bearing two ZnDPA units designed to undergo substantial conformational changes upon ATP binding, thereby disrupting membrane packing and triggering the release of encapsulated contents. Dye leakage assays using the hydrophobic dye Nile red validated that ATP-driven release was selective over 11 similar phosphorylated metabolites, and release of the hydrophilic dye calcein was also achieved. Multiple alternative lipid switch structures were synthesized and studied (1c-d and 2), which provided insights into the structural features that render 1a-b selective toward ATP-driven release. Importantly, analysis of cellular delivery using fluorescence microscopy in conjunction with pharmacological ATP manipulation showed that liposome delivery was specific, as it increased upon intracellular ATP accumulation, and was inhibited by ATP downregulation. Our new approach shows strong prospects for enhancing the selectivity of release and payload delivery to diseased cells driven by metabolites such as ATP, providing an exciting new paradigm for controlled release.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.