Abstract

ATP-sensitive K + channels play an important role in regulating membrane potential during metabolic stress. In this work we report the effect of ATP and ADP-Mg on a K + channel present in the membrane of rough endoplasmic reticulum (RER) from rat hepatocytes incorporated into lipid bilayers. Channel activity was found to decrease in presence of ATP 100 μM on the cytoplasmic side and was totaly inhibited at ATP concentrations greater than 0.25 mM. The effect appeared voltage dependent, suggesting that the ATP binding site was becoming available upon channel opening. Channel activity was suppressed by the nonhydrolyzable ATP analog (ATPγS), ruling out a phosphorylation-based mechanism. Notably addition of 2.5 mM ADP-Mg to the cytosolic side increased the channel open probability at negative potentials. We conclude that the large conductance voltage-gated cation channel in RER of rat hepatocytes is an ATP and ADP sensitive channel likely to be involved in cellular processes such as Ca 2+ signaling or control of membrane potential across the endoplasmic reticulum membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.