Abstract
ATP is an obligatory agent for the atrial natriuretic factor (ANF) and the type C natriuretic peptide (CNP) signaling of their respective receptor guanylate cyclases, ANF-RGC and CNP-RGC. Through a common mechanism, it binds to a defined ARM domain of the cyclase, activates the cyclase and transduces the signal into generation of the second messenger cyclic GMP. In this presentation, the authors review the ATP-regulated transduction mechanism and refine the previously simulated three-dimensional ARM model (Duda T, Yadav P, Jankowska A, Venkataraman V, Sharma RK. Three dimensional atomic model and experimental validation for the ATP-regulated module (ARM) of the atrial natriuretic factor receptor guanylate cyclase. Mol Cell Biochem 2000;214:7–14; reviewed in: Sharma RK, Yadav P, Duda T. Allosteric regulatory step and configuration of the ATP-binding pocket in atrial natriuretic factor receptor guanylate cyclase transduction mechanism. Can J Physiol Pharmacol 2001;79: 682–91; Sharma RK. Evolution of the membrane guanylate cyclase transduction system. Mol Cell Biochem 2002;230:3–30). The model depicts the ATP-binding dependent configurational changes in the ARM and supports the concept that in the first step, ATP partially activates the cyclase and primes it for the subsequent transduction steps, resulting in full activation of the cyclase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.